Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 39468 

Re: De grafiek van een functie met vierkantswortel

Weeral het gevolg van een van de voorwaarden over de continuïteit van een functie ? Kan ik dan het probleem niet oplossen door f(x) te transformeren in een continu functie f(y)? Hier in dit geval: y2=x+1 waaruit f(y)= y2-1 , zodat waardoor ik wel ALLE oplossingen voor x bekom?
Bestaan er tools die mij toelaten om f(y) functie te presenteren?

J-P.
Ouder - woensdag 22 juni 2005

Antwoord

Beste Jean-Pierre,

Het is hier geen kwestie van continuïteit, de functie y = Öx is volledig continu over zijn domein. Om echter een 'functie' te kunnen zijn mag er voor elke x-waarde maar precies één beeld zijn, de functiewaarde. Wanneer je bij deze wortelfunctie zowel de negatieve als de positieve oplossing toelaat, zou het geen functie meer zijn. Vandaar dat men - en dit is louter conventie - de positieve oplossing aanneemt wanneer je Öx gebruikt.

Wat jouw voorbeeld betreft dan. Als y2=x+1, dan is inderdaad x=f(y)=y2-1. Nu krijg je weliswaar de grafiek met 'alle oplossingen', maar dit is niet langer een functie - althans y geen functie meer van x. Uiteraard is hier nu x wel een functie van y, voor elke y-waarde heb je precies één x-waarde.

mvg,
Tom

td
woensdag 22 juni 2005

©2001-2024 WisFaq