De vergelijking 6n7 + 21n6 + 21n5 - 7n3 + n kan worden ontbonden in (n+1)(2n+1)(3n5 + 6n4 - 3n2 + n). Hoe moet ik nu verder om het ontbinden in factoren netjes af te ronden? Vriendelijke groet,
R. Suy
Student hbo - dinsdag 31 mei 2005
Antwoord
Beste R.
Jouw ontbinding klopt al tot dusver, maar je kan nog makkelijk een n afzonderen:
Verder ontbinden zal niet meer (geheel) gaan, tenzij je ook wortels toelaat maar dat wordt al een stuk ingewikkelder. Overigens kan ik je al verklappen dat de 4e-graadsfunctie die overblijft geen reële nulpunten meer heeft, dus als je de vergelijking gelijk aan 0 zou willen oplossen zijn de enige 3 reële nulpunten n = 0, n = -1/2, n = -1.