Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Homogene systemen

Ik ben bezig een vraag aan het oplossen, maar op een gegeven moment loop ik vast. de vraag is:

y1'= y1-y2
y2'= y1+y2

het is de bedoeling de generale oplossing te vinden.
Ik probeer dit te doen d.m.v. eigenvectoren. daardoor krijg ik de volgende vergelijking:
(1-l)(1-l)*-1*-1 =0
l2-2l+1=-1
l2-2l+2=0

deze vergelijking is complex ik heb de volgende waarden voor labda gevonden

l= 1/2 (±i Ö4)

Maar dan weet ik niet hoe ik verder moet om tot de generale oplossing te komen.

Gerlof
Student universiteit - vrijdag 13 mei 2005

Antwoord

Beste Gerlof,

Je coëfficiëntenmatrix A is:
(+1 -1)
(+1 +1)

De karakteristieke determinant is dus:
|1-l -1|
|+1 1-l|

Gelijkstellen aan 0 en oplossen geeft volgens mij;
(1-l)2+1 = 0 = l = 1 ± i

Ik denk dat je ergens teveel vermenigvuldigd hebt.

Als je dan de eigenwaarden hebt en je vindt per eigenwaarde een eigenvector V, dan geldt dat Ve^(lx) een oplossing is van het stelsel differentiaalvergelijking voor elke eigenwaarde en bijbehorende eigenvector.

mvg,
Tom

td
vrijdag 13 mei 2005

©2001-2024 WisFaq