Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Analytische bewijzen

hey! Een driehoek ABC is gelijkbenig als en slechts dan als twee zwaartelijnen van DABC gelijk zijn.hoe toon je dit analyitsch aan? en hoe bewijs je dit analytisch voor de twee hoogtelijnen van diezelfde gelijkbenige driehoek? we hebben geleerd dat je deze driehoek in een assenstelsel kunt tekenen met BC als x-as en de y-as door puntA , maar hoe daaraan beginnen? pfffhoeee

lien
2de graad ASO - donderdag 12 mei 2005

Antwoord

Geef de punten coordinaten: A(0,a), B(b,0) en C(c,0). Dat b=-c zal moeten volgen uit het gegeven.

Bereken nu de afstand tussen B en het midden van AC en tussen C en het midden van AB. Je zal zien dat uit de gelijkheid van die afstanden, volgt dat ofwel b=c (maar dan is er geen sprake van een driehoek) ofwel b=-c (zodat ABC gelijkbenig is)

Lukt het zo?

cl
donderdag 12 mei 2005

©2001-2024 WisFaq