Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Oppervlakte van functies

Hoe bereken ik de positieve oppervlakte van deze figuur? Alvast bedankt voor jullie hulp, misschien kan ik voor mijn wiskunde er geraken dit jaar...

f(x) = x2 - 4x + 3
g(x) = x + 3

steven
Student Hoger Onderwijs België - woensdag 5 juni 2002

Antwoord



De snijpunten liggen in (0,3) en (5,8).

De oppervlakte tussen twee krommen is altijd gelijk aan de integraal van 'bovenste functie' minus 'onderste functie'.
De ligging t.o.v. de x-as is hierop niet van invloed!

$
\eqalign{
& \int\limits_0^5 {g(x) - f(x)\,\,dx} = \cr
& \int\limits_0^5 {x + 3 - (x^2 - 4x + 3)\,\,dx} = \cr
& \int\limits_0^5 { - x^2 + 5x\,\,dx} = \cr
& \left[ { - \frac{1}
{3}x^3 + 2\frac{1}
{3}x^2 } \right]_0^5 = \cr
& 20\frac{5}
{6} - 0 = \cr
& 20\frac{5}
{6} \cr}
$

MBL
woensdag 5 juni 2002

©2001-2024 WisFaq