Ik vraag mij af waarvoor oneigenlijke integralen in het echte leven gebruikt worden.
Enric
3de graad ASO - vrijdag 18 februari 2005
Antwoord
Het ligt er maar aan wat u onder het "echte leven" verstaat. De arbeid van professoren in hun universitaire kamertjes maakt daar volgens u misschien geen deel van uit, maar hun werk wordt weer gebruikt door statistici, bouwkundigen, verzekeraars, bruggenbouwers, etc. Voorbeeld: schets de grafiek van z=exp(-x2); wentel deze om de z-as, je krijgt dan de grafiek van z=exp(-x2-y2); dat is een zandoppervlak uit het echte leven; om de inhoud van de zandberg {0zexp(-x2-y2)} uit te rekenen, moet je een oneigenlijke integraal berekenen. In wiskundige modellen van de werkelijkheid gebruikt men bij zeer lange tijden of lengten vaak voor de eenvoud oneindig lange intervallen.