Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 33347 

Re: Sinus opgaven

Hallo Tom,
Bedankt! Ik probeer de regel sinx(2sinx-1) =0 te begrijpen, maar hoe kan dit nou nul zijn als 2sin2x - sinx ook 0 is? Wat is een sin2 en hoe moet ik dit in de rekenmachine invoeren?

De tweede heb ik niet goed neergezet: het moet zijn sin(x-1)5+4=12.

Tijntj
Leerling onderbouw vmbo-havo-vwo - donderdag 27 januari 2005

Antwoord

Hallo Tijntje,

Als je de sinx naar het linkerlid brengt ziet de opgave er zo uit:
2sin2x - sinx = 0

Je kan deze uitdrukking nu ontbinden in factoren.
Sin2x is de notatie voor (sinx)2, dit is dus (sinx)(sinx).
Sinx is een gemeenschappelijke factor, die kan je dan buiten haakjes brengen.
2sin2x - sinx = 0 wordt dan : sinx(2sinx - 1) = 0
Reken maar na door de haakjes terug uit te werken.
Nu heb je een product gelijk aan 0, dit kan enkel als minstens één van de twee factoren gelijk is aan 0, daarom onderscheiden we vanaf die stap 2 gevallen. We maken er dus eigenlijk 2 'kleinere' vergelijkingen van.

In je rekenmachine zal er wel ergens een knop 2 staan, om te kwadrateren. Als die er niet is kan het waarschijnlijk met ^2.

Die 2e opgave lijkt nog steeds niet te kloppen, een sinus ligt immers altijd tussen -1 en 1.

mvg,
Tom

td
donderdag 27 januari 2005

 Re: Re: Sinus opgaven 

©2001-2024 WisFaq