Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Complexe vergelijking

Hallo,
Nog een probleem,waar ik niet uit geraak...
Toon aan dat als z=x+yi een oplossing is van de vkv ax2+bx+c+0 met a$\in$R0(R nul bedoeld!) en b,c$\in$R dan is ook de toegeveogde van z, namelijk x-yi een oplossing van deze vkv.
Kunt U mij nog eens wat op weg zetten..
Groeten van Hendrik

hl
Ouder - woensdag 5 januari 2005

Antwoord

Vul in wat het betekent dat z oplossing is van ax2+bx+c=0.
nl: az2+bz+c=a(x+yi)2+b(x+yi)+c=0
$\Leftrightarrow$ a(x2+2xyi-y2)+b(x+yi)+c = 0
$\Leftrightarrow$ (ax2-ay2+bx+c)+(2xy+by)i= 0 (herschikken)
A+Bi=0 $\Leftrightarrow$ A=0 en B=0
dus: ax2-ay2+bx+c = 0 en 2xy+by = 0
Vul nu x-yi in en hou rekening met bovenstaande gelijkheden.
Mvg,
Els

Els
woensdag 5 januari 2005

©2001-2024 WisFaq