Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Oplossen differentiaalvergelijking

Beste meneer, mevrouw,
ik heb een vraagje over de volgende differentiaalvergelijking: f''(t)-5f'(t)+6f(t)=cos(t) met f(0)=0 en f'(0)=1
Ik ben tot het volgende gekomen:l1=2 en l2=3. maar wat kan ik hiermee en hoe moet ik verder.
Ook snap ik het pricipe van het oplossen van derde orde vergelijkingen niet. ik heb geen idee hoe je bv f'''=f' met bepaalde voorwaarden kunt oplossen. Kun u mij helpen?

Esther
Student universiteit - woensdag 29 december 2004

Antwoord

Esther,
De wortels van de karakteristieke vgl.zijn l1=2 en
l2=3.Dat betekent dat de algemene oplossing van de homogene verg. is f(t)=Ae^2t +Be^3t.Om een oplossing te vinden van de inhomogene vgl.proberenwe
f(t)=Csin(t)+Dcos(t).Bepaal de eerste en tweede afgeleide en invullen geeft:5C+5D=0 en 5D-5C=1,dus C= -0,1 en D=0,1.
Algemene opl:
f(t)=Ae^2t +Be^3t-0,1sint +0,1cost.
f(0)=A+B+0,1=0 (eerste voorwaarde).Voor de tweede voorwaarde moet je eerst f'(t) bepalen en dan t=0 invullen.
Dit geeft een tweede vgl. voor A en B.
Hopelijk lukt het zo,
Groeten,



kn
woensdag 29 december 2004

©2001-2024 WisFaq