Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Re: Intrestberekening

Je wil door bijvoorbeeld 40 jaarlijkse gelijke stortingen te doen, aan een vaste samengestelde intrest, een eindkapitaal bereiken van 20250 euro. Hoeveel moet ik jaarlijks storten? Kan iemand mij die formule geven?

hk
Docent - vrijdag 10 december 2004

Antwoord

o.k, hierbij dan de oplossing.Algemeen:
X=grootte periodieke stortingen.
n=aantal stortingen.
hetpercentage s.i.op periodebasisis p en i=p/100.
Zij E=de eindwaarde één periode na de laatste storting.

Dan is E=X*((1+i)^n+1-(1+i))/i.
Het is belangrijk dat het gegeven perc.qua periode overeenstemt met de periode van de stortingen.Als b.v,het perc.s.i. 5%is op jaarbasis en de stortingen zijn halfjaarlijks, dan is het gelijkwaardige halfjaarlijkse percentage niet 2,5%,maar (1,05^1/2-1)*100=2,4695%.

De eindwaarde tegelijk met de laatste storting is natuurlijk E/(1+i).

in de verg. staan 4 onbekenden. bij elk gegeven drietal is de vierde te berekenen.

kn
vrijdag 10 december 2004

©2001-2024 WisFaq