Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Maximale snelheid in de x-richting

Hoi :),

Ik had een vraagje waar ik niet uitkom, namelijk:

Men heeft de volgende snelheidsvergelijkingen van de volgende punten:

punt A = v = Ö(0,52362+0,26182) waarbij 0,5236 = x'(t) en waarbij 0,2618 = y'(t)

punt B = v = Ö(0,26182+0,52362) waarbij 0,2618 = x'(t) en waarbij 0,5236 = y'(t)

punt C = v = Ö(02+0,45342) waarbij 0 = x'(t) en waarbij 0,4534 = y'(t)

punt C = v = Ö((-0,4534)2+02) waarbij -0,4534 = x'(t) en waarbij 0 = y'(t)

De vraag is nu: "In welk punt is de snelheid in de x-richting maximaal? en Hoe groot is die snelheid dan?"

Hoe pak ik dit aan?

Alvast dank.

Hans.

Hans
Leerling bovenbouw havo-vwo - donderdag 9 december 2004

Antwoord

Voer de functie Y = Ö[(x')2+(y')2] in je GR in en bepaal met de knop Calc Maximum/Minimum de gezochte waarde.
Als dat niet de bedoeling is, differentieer die functie dan om het extreem te bepalen. Dat laatste is wel veel lastiger om te doen, maar misschien is het in deze concrtete opgave mogelijk.

MBL
donderdag 9 december 2004

©2001-2024 WisFaq