Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Standaardformules en vergelijkingen

Hai!
Ik heb wat dingetjes waar ik niet helemaal uit kom:
1) cos(p-3x).sin(p/2-3x)+sin(-3x).cos(p/2-3x)+tan(p-2x)=0
Û-cos(3x).cos(3x)-sin(3x).sin(3x)-tan(2x)=0
Ik begrijp vooral de tangens niet en de verandering van negatief/positief
2)sin(x)-2(sin(x))2=0
Ûsin(x)[1-2sin(x)]=0
3) (2tan(3x)):(1-(tan(3x))2=0,5Ö3
Ûtang(6x)=0,5Ö3
Bedankt!

loes
Leerling bovenbouw havo-vwo - vrijdag 19 november 2004

Antwoord

dag Loes,

1)
Kijk nog eens goed naar je formuleblad, of naar de standaardgrafieken van sin(x), cos(x) en tan(x).
Dan moet daaruit duidelijk worden (wegens symmetrie) dat bijvoorbeeld:
cos(p-t) = - cos(t)
cos(p/2 - t) = sin(t)
tan(p-t) = - tan(t)
Hiermee moet je de eerste omzettingen kunnen snappen.

2)
Hier wordt een factor sin(x) buiten haakjes gehaald.
Het komt op hetzelfde neer als bijvoorbeeld:
2x2 - 5x = x·(2x - 5)

3)
De verdubbelingsformule voor de tangens luidt:
tan(2t) = 2·tan(t)/(1 - tan2(t))
Vul nu voor t de waarde 3x in, en je snapt de laatste omzetting (dat hoop ik tenminste).

groet,

Anneke
vrijdag 19 november 2004

©2001-2024 WisFaq