Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Diagonalen parallellogram

Hallo,
Hebben jullie enig idee hoe ik met vectoren moet bewijzen dat dat de diagonalen van een parallellogram elkaar middendoor snijden? (mijn vraag is eigenlijk hoe ik het te bewijzen "door 1 punt" moet uitdrukken met vectoren)

Bedankt!
Kiri

kiri
3de graad ASO - zaterdag 6 november 2004

Antwoord

Gegeven een parallellogram OABC.
OA=a, OC=c. (ik laat pijltjes en streepjes weg).
Deze vectoren zijn lineair onafhankelijk en vormen een basis.
Voor diagonaal OB hebben we de vectorvoorstelling: x=l(a+c)=la+lc
Voor diagonaal AC hebben we de vectorvoorstelling x=a+m(a-c)=(1+m)a-mc
Vanwege de onafhankelijkheid van a en c moet in het snijpunt S gelden:
l=1+m
l=-m

Uit dit stelsel volgt: 1+m=-m, dus 2m=-1, dus m=-1/2 en l=1/2
Dus OS=1/2(a+c).
Hieruit volgt direct dat S het midden is van OB.
Is S ook het midden van AC:
Volgens de vectorvoorstelling van AC geldt:
OS=a-1/2(a-c)=a+1/2(c-a)=OA+1/2AC.
Dus AS=1/2AC. Ja dus.

hk
zaterdag 6 november 2004

©2001-2024 WisFaq