Hoe los je een derdegraadsvergelijkig op van de vorm: x3 - 0.06x2 + 1.09x - 0.3 = 0
Wouter
Student universiteit - vrijdag 5 november 2004
Antwoord
Wouter, Een mogelijke oplossing is deze: Subst. in de gegeven vergelijking.x=y+0,02.Dit geeft na enig rekenwerk de vergelijking: y3+py+q=0. (p=1,0888 en q=-0,279392 als ik geen rekenfouten heb gemaakt. Zelf narekenen). Subst. nu y=z-p/(3z). Dit geeft: z3-p3/(27z3)+q=0. Vermenigvuldig met z3geeft een kwadratische vergelijking.in z3.
opl.z3= -q/2+√q2/4+p3/27 (2 waarden) Dit geeft 6 opl. voor z, maar subst .in y=z-p/(3z) geeft 3 opl. voor y. Hopelijk lukt het zo.