Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Geen extremum

goedendag

voor welke waarde van m heft de functie

(mx2 - 2x + m ) / ( x- 1 )

geen extremum ?

Volgens mijn zusje moet dan de afgeleide verschillen van nul.

Na wat gereken kom ik tot

( mx2 - 2mx - m + 2 ) / ( x - 1 )2 verschilt van nul

Omdat die x daar blijft inzitten geraak ik niet echt verder .

Zit ik totaal in de bonen of kortbij het einde ?

Hartelijk dank

roger
3de graad ASO - dinsdag 7 september 2004

Antwoord

Je afgeleide is goed en je bent al een heel eind.
Het gaat er dus om of: mx2-2mx-m+2=0 oplossingen heeft die van 1 verschillen.
Nu is mx2-2mx-m+2=0 een tweede graads vergelijking.
Gebruik dus eens de abc-fomule, of eerst alleen de discriminant.

hk
dinsdag 7 september 2004

©2001-2024 WisFaq