Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 25927 

Re: RSA

Hoi Anneke,
Heel erg bedankt voor je snelle reactie. Ik weet niet of ik zo weer door kan reageren met een nieuwe vraag, maar probeer het gewoon. Want, helaas stuit ik nu nog op een onduidelijkheid, die gaat als volgt. Als M mijn boodschap is, C de codetekst die ik uiteindelijk verzend, e de coderingscode is en d mijn decoderingscode krijg je met het coderen en decoderen de volgende 'formules':

C = Me (mod n) en Cd (mod n) = M'

nu geldt dus M' = M.

Dit kun je bewijzen door:

M’ $\equiv$ Cd (mod n) $\equiv$ (Me)d (mod n) $\equiv$ Me·d (mod n)

Me·d = M(1+k$\phi$(n))

M(1+k$\phi$(n)) =(M$\phi$(n))k · M $\equiv$ (1)k · M (mod n) $\equiv$ 1 (mod n)

Op zich snap ik dit voor een groot gedeelte. Mij is onduidelijk waar nu precies wel en geen '(mod n)' bijhoort. Of mag het overal tussen de $\equiv$-tekens staan?
En waarom is (M$\phi$(n)) k = 1k?

Alvast hartstikke bedankt!
Groetjes,

wendy
Leerling bovenbouw havo-vwo - woensdag 30 juni 2004

Antwoord

Hoi,

De onderliggende wiskunde van deze RSA-encryptie is de stelling van Euler, een veralgemening van de kleine stelling van Fermat.

Als a en n onderling ondeelbaar zijn (ggd(a,n)=1), dan is a$\phi$(n)=1 (mod n). In het bijzonder geldt dan voor je welgevormde bericht M dat M$\phi$(n)=1 (mod n). (Of je dat met $\equiv$ of = schrijft, maakt volgens mij weinig uit. Ik zou die $\equiv$ voor het gemak en de duidelijkheid nooit gebruiken. Soms laten ze de (mod n) weg als het duidelijk is, maar het kan geen kwaad om dat er altijd bij te zetten.)

De truuk (en de moeilijkheid) bestaat erin 2 getallen e en d te vinden zodat e.d=1 (mod $\phi$(n)) of anders genoteerd: e.d=1+k.$\phi$(n) voor een zekere gehele k. De kracht van de code volgt uit het feit dat het praktisch te lang duurt om d te berekenen als je n en e kent.

Met C en M' zoals jij die definieerde, hebben we dan (alles (mod n)):
M'=Cd=(Me)d=M1+k.$\phi$(n)=M.(M$\phi$(n))k=M.1k=M.

Groetjes,
Johan

andros
vrijdag 2 juli 2004

©2001-2024 WisFaq