Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Bewijs afgeleide tangens

Ik heb jullie vanmorgen de vraag gesteld over het bewijs van de afgeleides van sin(x), cos(x) en tan (x). Jullie hebben daarop geantwoord dat ik bij tan(x) de quotiëntregel moet gebruiken. Nu ben ik tot hier gekomen:

tan (x) = sin(x)/cos(x)
dan de quotiëntregel toepassen
(cos(x)·cos(x)+sin(x)·-sin(x))/cos2(x)=
(cos2(x)-sin2(x))/cos2(x)=
-sin2(x)

Kunnen jullie mij aub helpen met de laatste stap(pen)???

Henk v
Leerling bovenbouw havo-vwo - woensdag 16 juni 2004

Antwoord

Hallo Henk,

q25476img2.gif

cos(x)·cos(x)+sin(x)·-sin(x))/cos2(x)=

moet worden

(cos(x).cos(x) - sin(x).-sin(x))/cos2(x)=(cos2(x)+sin2(x))/cos2(x)=1/cos2(x)

wl
woensdag 16 juni 2004

©2001-2024 WisFaq