Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Hoe kun je weten op hoeveel nullen n! eindigt?

Hallo, ik heb een vraagje over hoe je kunt weten op hoeveel nullen N! eindigt en waarom je dan N door 5 en N door 52 etc moet delen? Kunt u mij dit uitleggen hoe je met een bewijs kunt uitleggen op hoeveel nullen N! eindigt.

bijvoorbaat dank Joris

Joris
Leerling bovenbouw havo-vwo - donderdag 3 juni 2004

Antwoord

dag Joris,

Elke nul waar N! op eindigt is afkomstig van de vermenigvuldiging van een 5 met een even getal.
Nu zijn er bij elke 5 genoeg even getallen beschikbaar om er een nul bij te krijgen, dus je hoeft alleen te kijken hoevaak de 5 voorkomt in N!
Neem bijvoorbeeld N=38.
Hoeveel factoren 5 zitten dan in N! ?
Het zijn de getallen 5, 10, 15, 20, 25, 30 en 35 die een 5 leveren, en bovendien levert 25 nog een extra 5.
Het aantal nullen waar 38! op eindigt is dus 8.
Kun je dit nu verder doorredeneren?
succes,

Anneke
donderdag 3 juni 2004

Re: Hoe kun je weten op hoeveel nullen n! eindigt?

©2001-2024 WisFaq