Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Vreemde loterij

Er is een loterij:
  • op 5% van de loten valt een prijs van €500,- de winnende loten worden teruggedaan (met terugleggen dus)
  • op 20% van de loten valt een troostprijs van €100,-
Er wordt mij gevraagd de kans uit te rekenen dat iemand minstens 1 prijs wint. Natuurlijk is het makkelijkst P(minstens1)=1-P(geen):
1-(0.80*0.95)=0.24

Maar is het niet mogelijk om P(1)+P(2) uit te rekenen:
P(1)= 0.05+0.20=0.25
P(2)= 0.05*0.20=0.01
Dit opgeteld is natuurlijk geen 0.24.

Hoe moet ik de optie P(1)+P(2) aanpakken om ook op 0.24
uit te komen?

Joep
Leerling bovenbouw havo-vwo - woensdag 19 mei 2004

Antwoord

Laten we de volgende gebeurtenissen onderscheiden:

H: je wint een hoofdprijs
T: je wint een troostprijs

P(minstens 1 prijs)=P(1 prijs)+P(2 prijzen)

P(1 prijs)=P(H en geen T)+P(geen H maar wel T)

P(H en geen T)=0,05·0,80=0,04
P(geen H maar wel T)=0,95·0,20=0,19

P(1 prijs)=0,23
P(2 prijzen)=0,05·0,20=0,01

P(1 of 2 prijzen)=0,24

Jippie! Het klopt als een bus...

WvR
woensdag 19 mei 2004

©2001-2024 WisFaq