Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Het differentiëren van het getal van Euler

Hoe zit het nou precies met het differentiëren van functies met het getal van Euler?? Ik snap het nl. helemaal niet meer!

Ik neem een 'gewone' e voor het getal van Euler. In mn boek staat: Er geldt dus: als f(x)=ex, dan is f'(x)=ex. Dat leek me wel simpel.

Nu een voorbeeld waardoor ik het niet meer snap.
P(x)=ex ´ x2 volgens het antwoordenboek is het dan P'(x)=ex ´ (x2+2x)

ik snap niet goed wat ik moet doen met de rest van de functie (dus alles in de functie naast ex). Zou u kunnen uitleggen wat de differentie regels zijn bij het getal van Euler?

Dorien
Leerling bovenbouw havo-vwo - donderdag 13 mei 2004

Antwoord

Hoi,

Je moet de productregel kennen, zij h(x) de functie die je wilt differentiëren dan geldt h'(x)=(f(x)·g(x))' = f'(x)·g(x) + g'(x)·f(x).
Dus h(x)=ex·x2 Þ h'(x)=(ex)'·(x2) + (x2)'·(ex). Want f(x)=ex en g(x)=x2. Dus f'(x)=ex (standaardregel) en g'(x)=2x (regel (xn)' = nxn-1).
Dus h'(x)=ex·x2 + 2x·ex.

Nu kunnen we ex nog buiten haakjes brengen, zodat h'(x) = ex(x2+2x).

Groetjes,

Davy.

Davy
donderdag 13 mei 2004

 Re: Het differentiëren van het getal van Euler 

©2001-2024 WisFaq