Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

De grootste en de kleinste waarde uit een reeks van twee

Neem twee getallen, a en b.
De grootste van deze twee = (a*(a/b) + b*(b/a))/(a/b + b/a).
De kleinste van deze twee = (b*(a/b) + a*(b/a))/(a/b + b/a).

Het werkt, maar ik heb geen idee wat voor truuk hier wordt toegepast. Wat is een eenvoudig te doorziene manier om tot de bovenstaande conclusie te komen? Graag een bewijs!

Loek
Student universiteit - zaterdag 1 mei 2004

Antwoord

De eerste uitdrukking laat zich vereenvoudigen tot:
(a3+b3)/(a2+b2)

De tweede uitdrukking tot:
ab(a+b)/(a2+b2)

Blijft over te bewijzen dat a3+b3ab(a+b)
a3+b3-ab(a+b)0
(a-b)2(a+b)0

Maar helaas, dit gaat alleen op als a+b0, dus voor a=-2 en b=-3 klopt de gegeven bewering niet eens.

Conclusie: dit werkt niet!

P.S.
Als a,b>0 dan klopt het wel! Zie boven.

WvR
donderdag 6 mei 2004

©2001-2024 WisFaq