Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Rechte van Euler

hoe bewijs ik dat de afstand van het snijpunt v d hoogtelijnen in een driehoek tot het snijpunt v d zwaartelijne van die driehoek gelijk is aan 2x de afstand van het snijpunt van de zwaartelijnen tot het snijpunt van de middelloodlijnen?

thomas
2de graad ASO - woensdag 28 april 2004

Antwoord

Beste Thomas,

Even wat namen:
Snijpunt van de hoogtelijnen: h
Snijpunt van de zwaartelijnen: g
Snijpunt van de middelloodlijnen: o

Noem de driehoek abc. Het midden van bc noemen we a', van ac noemen we b' en van ab noemen we c'. De driehoek a'b'c' is te verkrijgen uit driehoek abc met de homothetie h(g,-1/2), want de zwaartelijnen snijden elkaar in een verhouding 2:1.

Nu moeten we even inzien dat de middelloodlijnen van driehoek abc de hoogtelijnen zijn van a'b'c'. Dus h gaat over in o door dezelfde homothetie. En dat is precies wat werd gevraagd.

N.B. De homothetie h(g,-1/2) doet hetvolgende: neem een punt x. Noem de afstand g tot x even a. Dan brengt h(g,-1/2) het punt x naar een punt y op afstand 1/2a van g, en aan de andere kant van g (vandaar de -).

FvL
donderdag 29 april 2004

©2001-2024 WisFaq