Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Bionium van Newton en driehoek van Pascal

Hallo,

'k Heb een werkstuk gemaakt over de driehoek van Pascal.. dit allemaal begrijp ik.. maar nu vind de leraar dat ik ook het bionium van Newton erin moet verwerken.. ik weet echt niet wat dit is..en heb het al geprobeerd om hier te vinden..ik begrijp er nix van.. Kunnen jullie mij dit uitleggen met een voorbeeld zodat ik dit begrijp en kan gaan verwerken?
Alvast bedankt
Ilona

ilona
Leerling bovenbouw havo-vwo - dinsdag 20 april 2004

Antwoord

Met het binomium van Newton kun je vrij snel machten van tweetermen uitschrijven. Als voorbeeld doe ik (a+b)4 voor.
Wanneer je dit helemaal met de hand gaat uitpennen, dan wordt het eindresultaat 1.a4 + 4.a3b + 6.a2b2 + 4.ab3 + 1.b4

Let nu eerst eens op de letters. In de eerste term zitten 4 factoren a en nul factoren b. In de term daarna zitten nog maar 3 factoren a en 1 factor b.
Verdergaand zie je (hopelijk!) dat er steeds 1 factor a verdwijnt en dat daarvoor in de plaats 1 factor b erbij komt. En in de laatste term zijn alle a's weg en heb je alleen nog maar 4 b's.

Nu de getallen die er voor staan. In dit voorbeeld zijn dat van links naar rechts 1, 4, 6, 4 en weer 1.

Reken nu met je rekenmachine eens uit 4nCr0, 4nCr1, 4nCr2, 4nCr3 en 4nCr4. Dit kan geen toeval zijn!

Dit patroon kun je nu ook toepassen met bijv. (a+b)10
De getallen worden achtereenvolgens 10nCr0, 10nCr1, 10nCr2 ....10nCr10 en de lettervormen zijn vanaf a10, a9b, a8b2 ...t/m b10

MBL
dinsdag 20 april 2004

©2001-2024 WisFaq