Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 13792 

Re: Re: Eerste kwartiel

De uitvinder van de boxplot, Tukey heeft het anders bedoeld. In het geval van 7 waarnemingen (a, b, c, d, e, f en g) is d de mediaan. Voor het bepalen van Q1 tellen alle waarden lager of gelijk aan de mediaan. Q1 is dus (b+c)/2 en Q3 is (e+f)/2
Om een (waarschijnlijk technische) reden wordt op grafische rekenmachines, b.v. de TI-82 en TI-83 een andere methode gebruikt, n.l. daar telt de mediaan bij een oneven aantal waarnemingen niet mee voor het bepalen van Q1 en Q3.
Soms lijkt deze methode dan ook als standaard verheven te worden, maar historisch en rekenkundig is hij fout.

Wessel
Docent - maandag 15 maart 2004

Antwoord

De vraag is natuurlijk: is dit van belang? Persoonlijk vind ik het nogal overdreven om van 7 getallen de kwartielen e.d. te gaan bepalen. Het wordt pas interessant bij grote aantallen gegevens. De kwesties 'wel of niet de mediaan erbij?' en zelfs 'is het totaal even of oneven?' lijken me dan ook niet zo van belang.

Daarnaast zijn dit soort gegevens in absolute zin meestal niet zo interessant. Mij lijkt dat je dit vooral gebruikt om verschillende verdelingen te vergelijken... maar goed: het zij zo en bedankt.

WvR
zaterdag 20 maart 2004

©2001-2024 WisFaq