Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Voortbrengende deelverzameling / basis

Hallo

Ik heb een vraagje i.v.m. het zoeken van een basis van een deelruimte.
De vectoren die de basis van een deelruimte moeten lineair onafhankelijk zijn, en ze moeten een voortbrengend deel zijn. Maar waarom is het juist nodig dat die vectoren een voortbrengend deel moeten zijn om een basis te vormen??

Met vriendelijke groeten

P.C.

Pieter
3de graad ASO - donderdag 22 januari 2004

Antwoord

Hoi,

Als je bijvoorbeeld in 3 kijkt, dan vormt A={(1,0,0),(0,1,0)} duidelijk een stel onafhankelijke vectoren, maar geen basis voor 3 omdat A niet voorbrengend is voor 3. De vectoren met een z-component verschillend van 0 kunnen namelijk niet 'voortgebracht' worden door lineaire combinaties van (1,0,0) en (0,1,0). A vormt wel een basis voor een deelruimte van 3, namelijk die van alle vectoren met z-component 0. Je moet dus goed bekijken voor welke vectorruimte je een basis zoekt.

Dit argument toont aan dat een basis van een vectorruimte voortbrengend moet zijn voor die vectorruimte. In mensentaal betekent dit dat je alle vectoren van die vectorruimte kan schrijven als een lineaire combinatie van die basisvectoren. Een basis is bovendien minimaal in de zin dat lineair afhankelijke vectoren eruit geweerd worden.

Groetjes,
Johan

andros
vrijdag 23 januari 2004

©2001-2024 WisFaq