Noem sin(x)-cos(x)=u, dan u2=sin2(x)-2sin(x)cos(x)+cos2(x) dus u2=1-2sin(x)cos(x), dus sin(x)cos(x)=1/2-1/2u2
De vergelijking sin(x)cos(x)+2sin(x)-2cos(x)-2=0 gaat dan over in 1/2-1/2u2+2u-2=0 -1/2u2+2u-11/2=0 u2-4u+3=0 (u-1)(u-3)=0 u=1 of u=3 sin(x)-cos(x)=1 of sin(x)-cos(x)=3 Ö2(sin(x-1/4p)=1 sin(x-1/4p)=1/2Ö(2) x-1/4p=1/4p+2kp of x-1/4p=3/4p+2kp x=1/2p+2kpof x=p+2kp