Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Goniometrische vergelijking

Los op:
sinx.cosx+2sinx-2cosx-2=0

cyntia
3de graad ASO - woensdag 21 januari 2004

Antwoord

Noem sin(x)-cos(x)=u, dan u2=sin2(x)-2sin(x)cos(x)+cos2(x)
dus u2=1-2sin(x)cos(x), dus sin(x)cos(x)=1/2-1/2u2

De vergelijking sin(x)cos(x)+2sin(x)-2cos(x)-2=0 gaat dan over in
1/2-1/2u2+2u-2=0
-1/2u2+2u-11/2=0
u2-4u+3=0
(u-1)(u-3)=0
u=1 of u=3
sin(x)-cos(x)=1 of sin(x)-cos(x)=3
Ö2(sin(x-1/4p)=1
sin(x-1/4p)=1/2Ö(2)
x-1/4p=1/4p+2kp of x-1/4p=3/4p+2kp
x=1/2p+2kpof x=p+2kp

hk
donderdag 22 januari 2004

©2001-2024 WisFaq