Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Tweegeitenprobleem

Beste Wisfaq,
Twee geiten hebben elk een touw van 1 meter om de nek. Elk touw zit vast aan een paal in de grond. Zo kan elke geit grazen binnen haar eigen cirkel met straal 1. Gevraagd is de afstand 2·s tussen de palen opdat de overlap van de cirkels even groot is als de helft van een cirkel. De overlap bestaat dus uit twee even grote cirkelsegmenten, elk groot 1/4p. Gevraagd wordt een exacte oplossing.
Een benaderende oplossing lukt me wel. Voor het oppervlak van een cirkelsegment binnen een hoek a rad vind ik 1/2·(a-sin(a)). Dit moet gelijk zijn aan 1/4p. Een numerieke of grafische benadering geeft a=2,31 rad, zodat 2·s=0,808 meter.
Naar verluidt is het probleem echter ook exact oplosbaar. Ik zou graag weten hoe.
Groeten, Jaap

Jaap
Docent - zondag 4 januari 2004

Antwoord

Ik denk dat dit 'verluiden' niet terecht was. Voor zover ik weet (eigenlijk de andere beantwoorders!) is er geen expliciete oplossing.

P.S.
Het geitenprobleem in de ruimte heeft wel een expliciete oplossing. Twee bollen met straal 1 en afstand 2s tussen de middelpunten hebben een gemeenschappelijk deel met inhoud gelijk aan de inhoud van een halve bol (2p/3) als s voldoet aan:
3s - s3 = 1.
Oplossing: s = 2 sin(p/18) = 0,347296..
JCS

Zie Circle-Circle Intersection

WvR
vrijdag 9 januari 2004

©2001-2024 WisFaq