Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Re: Verschilrij van Fibonacci

Hallo,

Ik heb de zelfde opdracht gekregen voor wiskunde, en ik heb dit antwoord gevonden. Ik heb wiskunde A1 en wat je hebt geschreven als antwoord is echt geheimtaal voor mij. Zouden jullie het misschien op een WA1 manier uit kunnen leggen?

bvd,
groetjes
inge

Inge v
Leerling bovenbouw havo-vwo - donderdag 11 december 2003

Antwoord

Beste Inge,

Je hebt de gewone Fibonacci-rij U(n): 1 1 2 3 5 8 ...

Kijk je naar de verschilrij V(n), dan lijkt die daar wel heel veel op: 0 1 1 2 3 5 ....

Je zou kunnen denken dat de verschilrij weer een Fibonaccirij is, maar die een stap achter loopt. Dus je zou kunnen denken dat V(n) = U(n-1).

Terug naar de Fibonacci-rij. Die is gedefinieerd met een recursieve formule:

U(n) = U(n-1) + U(n-2)
U(1) = 1
U(2) = 1

Ga je naar de verschilrij kijken, dan is die vanwege de definitie van een verschilrij:

V(n) = U(n+1) - U(n) [*]

We gaan nu de recursie van U toepassen, door U(n+1) = U(n) + U(n-1) en U(n) = U(n-1) + U(n-2) te substitueren in [*]. Je krijgt:

V(n) = U(n) + U(n-1) - ( U(n-1) + U(n-2) )

Met wat herschikken wordt dit

V(n) = U(n) - U(n-1) + U(n-1) - U(n-2)

En omdat V(n-1) = U(n) - U(n-1) en V(n-2) = U(n-1) - U(n-2) kunnen we hier weer van maken

V(n) = V(n-1) + V(n-2).

Kortom, de verschilrij voldoet aan dezelfde soort recursie als de Fibonacci-rij zelf. Door het bekijken van de beginwaarden zien we dat inderdaad de verschilrij dezelfde rij is als de Fibonacci-rij, maar dan een plaats opgeschoven.

FvL
donderdag 11 december 2003

©2001-2024 WisFaq