Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Nulpunten

Hallo, ik heb 2 vraagjes waar ik zelf niet uit kom.

Als ¦:® differentieerbaar is en n nulpunten heeft, dan heeft ¦' minstens n-1 nulpunten. Toon dit aan.

Als ¦:® tweemaal differentieerbaar is en drie nulpunten heeft, dan moet ¦ een buigpunt hebben. Toon dit aan. (Een buigpunt van ¦ is een nulpunt van ¦'')

Groetjes Ilse

Ilse
Student hbo - vrijdag 5 december 2003

Antwoord

1) Tussen twee opeenvolgende nulpunten ligt volgens de stelling van Rolle steeds minstens EEN punt c waarvoor f'(c)=0. Samen worden dat dus minstens n-1 nulpunten van f'

2) Er zijn volgens bovengenoemde stelling twee punten waarvoor f' nul wordt. Daar tussen ligt dus minstens een nulpunt van f"

PS: Merk ook op dat aan de voorwaarden van de stelling van Rolle voldaan is!

cl
vrijdag 5 december 2003

©2001-2024 WisFaq