Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Verwachtingswaarde, absolute waarde

Hallo,

Als X ~ N(0,1) wat is dan E[|X|] ?
Met andere woorden : wat is de verwachtingswaarde van de absolute waarde van X?

bedankt

tim
Student universiteit - zondag 23 november 2003

Antwoord

Voor een continue kansverdeling P(t) geldt dat je de verwachtingswaarde kunt berekenen als:
òt.P(t)dt waarbij als integratiegrenzen de grenzen van het domein worden genomen.
De "gewone" normale verdeling met m=0 en s=1 heeft als kansverdelingsfunctie P(t)=1/Ö(2p)*e^(-t2/2).
Vanwege de absoluutstrepen bij E(|X|) kunnen we nu als integratiegrenzen nemen 0 en ¥ en de uitkomst met 2 vermenigvuldigen.
We krijgen dan 20ò¥t.P(t)dt met P(t)=1/Ö(2p)*e^(-t2/2).
Een primitieve van t.1/Ö(2p)*e^(-t2/2) is -1/Ö(2p)*e^(-t2/2)
Alles invullen levert E(|X|)=2/Ö(2p)0.7978845608


hk
zondag 23 november 2003

©2001-2024 WisFaq