Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Priemgetallen en Euler

Ik weet dat Euler een formule voor priemgetallen heeft gemaakt (n2+n+41). Deze formule geldt alleen voor 1$\leq$n$<$40.
Valt dit te bewijzen (Zo ja, hoe)?

S.Niem
Leerling bovenbouw havo-vwo - woensdag 12 november 2003

Antwoord

Hoi,

Voor n=1..39 is f(n)=n2+n+41 hoogstens 1601. Het kleinste priemgetal p met p2$>$1601 is (toevallig) 41. Het volstaat dus om voor n=1..39 te controleren dat f(n) niet deelbaar is door geen enkel van de rij priemgetallen 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37. Eigenlijk volstaat het om voor een bepaalde n enkel die priemgetallen p te checken waarvoor p2$\leq$f(n).

Voor n=40 zie je dat f(n)=n(n+1)+41=40.41+41 en dit is duidelijk deelbaar door 41. Voor sommige n$>$40 zal f(n) ook wel een priemgetal zijn, maar dat moet je ook geval per geval bekijken.

Groetjes,
Johan

andros
woensdag 12 november 2003

©2001-2024 WisFaq