Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Vierkantsvergelijkingen met complexe coëfficiënten

Hallo,
ik moet de oefening x2+(-8+2i)x+10-20i=0 oplossen
Ik kan het oplossen tot op een bepaald punt
D= b2-4ac
D=(-8+2i)2-4*(1)*(10-20i)
D=64-32i+4i2-40+80i
D=24+48i+4i2
Maar hoe moet ik nu verder? Want we mogen niet zeggen dat het 20+48i is en dan de wortel er uit trekken,want dat is te veel werk we moeten het gewoon zo doen. Met 20 +48i kan ik het wel maar zoals we het nu moeten doen niet. Maar deze hier is een speciale, we hebben het vorig jaar gezien, maar ik heb mijn notities moeten afgeven en nu weet ik niet meer hoe ik het moet doen.
Alstublief help mij

Kim
Overige TSO-BSO - donderdag 30 oktober 2003

Antwoord

De waarde van de discriminant D heb je correct berekend. Maar bedenk dat 4i2 = -4, zodat D = 20 + 48i.

De vraag die nu eerst beantwoord dient te worden is hoe je uit 20 + 48 i de wortel trekt. Ik weet niet welke methode je hiervoor geleerd hebt, maar het zou als volgt kunnen.
Stel Ö(20 + 48i) = a + b.i hetgeen betekent dat (a + b.i)2 = 20 + 48i.

Uitwerken hiervan geeft dan a2 - b2 + 2ab.i = 20 + 48i.
Dat geeft a2 - b2 = 20 en 2ab = 48.
Hieraan wordt voldaan door a = 6 en b = 4.
Kortom: Ö(20 + 48i) = 6 + 4i

Verder lost de abc-formule het nu wel voor je op.

MBL
donderdag 30 oktober 2003

©2001-2024 WisFaq