Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Stelsel non-lineaire vergelijkingen

Bij het bestuderen van een artikel over de relativiteitstheorie kwam ik de volgende vergelijkingen tegen: 1 = a^2 - c^2 * d^2
0 = 2(v*a^2 - c^2 * d * y)
-c^2 = a^2 * v^2 - c^2 * y^2
met c = de lichtsnelheid en v de snelheid.

De oplossing is: y = a
d = v*a/c^2
a = (1 - v^2/c^2)^-0.5
Wanneer ik y = a heb, is de rest gemakkelijk af te leiden, maar hoe komen ze aan de oplossing y = a?

Bij voorbaat dank voor de oplossing.

Marcel.

M. van
Docent - dinsdag 28 oktober 2003

Antwoord

Dag Marcel,

Uit de eerste vergelijking kan je halen:
a2=1+c2d2

Vervang hierin d2 volgens uitdrukking 2: je weet dat
va2-c2dy=0
Dus d=... dus d2=... (in functie van v,c,a,y)
Maar vergelijking drie laat toe y2 te schrijven als:
(c2+a2v2)/c2

Resultaat: a2=1+(v2a4)/(c2+a2v2)
Dus (a2-1)(c2+a2v2) = v2a4
Uitwerken geeft a2(c2-v2)=c2
Dit is een uitdrukking enkel in c en v. Deze a2 invullen in de derde vergelijking geeft een waarde voor y2, als je a2 invult in de eerste vergelijking heb je de oplossing d2=... in functie van c en v.

Je moet wel af en toe een vierkantswortel trekken, maar over het teken hoef je je nooit zorgen te maken omdat alle grootheden positief zijn, en omdat vc.

Ik heb nu wel eerst de oplossing voor a gevonden en daaruit y en d gehaald, maar als je de vergelijkingen in een andere volgorde beschouwt kan je waarschijnlijk ook wel eerst y=a uitkomen en dan de rest oplossen zoals je voorstelde.

Groeten,
Christophe.

Christophe
zaterdag 1 november 2003

©2001-2024 WisFaq