Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Bewijs formule van Euler

Hoe kun je de volgende formule van Euler bewijzen:
e$\Phi$ i = cos$\Phi$ + i sin$\Phi$?

Peter
Leerling bovenbouw havo-vwo - donderdag 23 oktober 2003

Antwoord

Door te vertrekken van de machtreeks voor exp(z). Dat is trouwens de *definitie* van exp(z) in de hogere wiskunde.

exp(z) = 1 + z + z2/2! + z3/3! + z4/4! + ...

zodat

exp(iz) = 1 + iz - z2/2! - iz3/3! + z4/4! + ...
exp(-iz) = 1 - iz - z2/2! + iz3/3! + z4/4! + ...

Sinus en cosinus worden nu hieruit *gedefinieerd* als

sin(z) = (1/(2i))[exp(iz)-exp(-iz)] [*]
cos(z) = (1/2)[exp(iz)+exp(-iz)] [**]

Hieruit kan je een veelheid van eigenschappen bewijzen die je al kent, zoals sin2(z)+cos2(z) of de verdubbelingsformules.

Vermenigvuldig [*] met i en tel er [**] bij op om het gevraagde te bekomen. Eigenlijk is dat dus een gevolg van de definities van sin(z) en cos(z) en niet echt een te bewijzen stelling...

cl
donderdag 23 oktober 2003

©2001-2024 WisFaq