Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 13448 

Re: Parabool

Van waar komt die parametervoorstelling?? Heb er eerlijk gezegd nog nooit van gehoord.
Alvast bedankt.
Bea

Bea Ve
Student Hoger Onderwijs België - maandag 18 augustus 2003

Antwoord

Je hebt de vergelijking: x-y=1

Bij zulke vergelijkingen kan je gewoon ofwel x ofwel y als pararmeter nemen. Ik heb in het vorige antwoord x genomen. Je stelt x=t en reken y uit in functie van t. (veel rekenen komt er bij dit voorbeeld niet aan te pas, rechten zijn namelijk nogal eenvoudige 'dingen' om een parametervoorstelling voor te maken)

Dus je hebt:
x=t
en
x-y=1 (met daarin x=t)

Dus
x=t
t-y=1
=
x=t
y=t-1

= (t,t-1)

Hierin loopt t van min oneindig naar plus oneindig.

Een ander voorbeeld van een parametervoorstelling:
een cirkel met straal r heeft als carthesische vergelijking:
x2+y2=r2
Als je hierin x=r*cos(t) stelt, dan krijg je:
r2cos2(t)+y2=r2
=
y2=r2(1-cos2(t)
y2=r2sin2(t)
y=r*sin(t)

Dus een geldige parametervoorstelling van een cirkel is
(r*cos(t),r*sin(t)) met tÎ[0,2p]


Koen Mahieu

km
maandag 18 augustus 2003

©2001-2024 WisFaq