Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 13113 

Re: Re: Olympiade

Hoe komt hij eigenlijk aan die vergelijking ?
die 122a+212b+221c=2003 ?
Iets is 2003 namelijk : De som van de vijf andere getallen met drie verschillende cijfers die men met deze cijfers kan vormen is 2003. Bepaal dat getal. (Vraag uit Vlaamse preselectie), maar uit die tekst kan ik zijn vergelijking niet uitmaken ze! Ik begrijp niet hoe hij met het gegeven aan die vergelijking komt!

ik
Iets anders - dinsdag 15 juli 2003

Antwoord

Wel, als je getal de vorm abc heeft (dus bv a=5, b=7, c=3 geeft 573) dan zijn de vijf andere getallen uit de opgave: 357, 375, 537, 735, 753. Wat is de som van deze getallen? De a (hier de 5) komt 1 keer voor als honderdtal, twee keer als tiental en één keer als eenheid, vandaar de 122a. Analoog komt b (hier 7) één keer voor als tiental, twee keer als honderdtal en twee keer als eenheid, vandaar 212b. En analoog 221c, en de som van de vijf getallen, dus ook van 122a+212b+221c, moet 2003 zijn.

Christophe.

Christophe
dinsdag 15 juli 2003

©2001-2024 WisFaq