Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Tekenverloop irrationale functies

Hallo, ik ben op zoek naar een goede manier om het tekenverloop van een irrationale functie te bepalen en meerbepaald van:
{2·sqrt(x2-5x) + 2x - 5}/{2·sqrt(x2-5x)}.
Zoals je kan zien is dit een breuk. Het teken van de noemer bepalen is geen probleem (nulpunten zoeken en voila) maar bij de teller kamp ik met probleempjes. Als ik het tekenverloop van de teller en van de noemer vind kan ik ze samen "gooien" en daaruit het algemene tekenverloop van de functie vinden.
Thx

Marjan
3de graad ASO - zaterdag 28 juni 2003

Antwoord

De nulpunten van de noemer zijn van belang voor het (eventueel) voorkomen van verticale asymptoten. Voor de nulpunten van deze functie kijk je voor welke waarde van x de teller nul wordt.

In dit geval zou je eerste moeten kijken naar het domein.
De noemer mag in ieder geval geen nul zijn en het getal onder het wortelteken mag niet kleiner dan nul zijn, dus gecombineerd:
x2-5x>0
x<0 of x>5

Voor welke waarde(n) van x is de teller gelijk aan nul?
2Ö(x2-5x)+2x-5)=0
2Ö(x2-5x)=-2x+5
4(x2-5x)=(-2x+5)2
4x2-20x=4x2-20x+25
0=25
Geen oplossing...

Dus het tekenverloop....
Bij x=0: ongedefinieerd (=0?)
Bij x=5: ongedefinieerd (=0?)
Voor 0x5 geen functiewaarde....
Voor x0 is f(x)0
Voor x5 is f(x)0

...en dan heb je het toch? Hopelijk helpt dat.

WvR
zaterdag 28 juni 2003

 Re: Tekenverloop irrationale functies 

©2001-2024 WisFaq