Je bekomt nu een rest die je al eens bent tegengekomen. Vanaf dit punt herhaalt alles zich dus, in het bijzonder de quotientcijfers. 1/7 is dus 0,142857142857142857...
Wat zijn nu de mogelijke resten bij deling door een getal N ? 0, 1, ..., N-1. Nul moeten we uitsluiten, want op dat punt stopt het verhaal, en is de decimale ontwikkeling van de breuk eindig. Er zijn dus N-1 mogelijke resten, dus in het slechtste geval is de periodiciteit van de breuk gelijk aan N-1.
Dat dat slechtst mogelijke geval zich niet altijd voordoet, moge duidelijk zijn uit voorbeelden als 1/5, 1/3 en 1/6.