Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Oplossen van ongelijkheden

Ik zit met een examensom:
f(x)=√(-2x+12) en g(x)=x-1
De vraag zelf is: los op f(x)$\leq$g(x) en eventuele afrondingen naar 2 decimalen.

I.J. G
Leerling bovenbouw havo-vwo - woensdag 7 mei 2003

Antwoord

Voor het oplossen van ongelijkheden hanteer ik zelf het volgende 'stappenplan'.
  1. Bereken de snijpunten waar het precies gelijk is
  2. Kijk naar domein en eventuele asymptoten
  3. Plot de grafieken
  4. Bepaal de oplossing
Laten we dit maar eens als voorbeeld nemen.

Snijpunten
√(-2x+12)=x-1
-2x+12=(x-1)2
-2x+12=x2-2x+1
x2=11
x=$\,\pm\,$√11
(dit kan eventueel ook met je GR)

Let op: -√11 kan geen oplossing zijn, want de 'uitkomst' van een wortel kan niet negatief zijn. x-1 zou -√11-1 zijn. Bij kwadrateren moet je altijd even controleren of je oplossingen wel voldoen.

Domein en asymptoten
Getallen onder het wortelteken mogen niet kleiner dan 0 zijn. Dus:
-2x+12$\geq$0
-2x$\geq$-12
2x$\leq$12
x$\leq$6

Grafieken plotten
q10652img1.gif

Oplossingen
Waar is nu f(x)$\leq$g(x)?
Ik zie een snijpunt (dat zal dan wel die √11 zijn!) en ik weet dat f(x) niet verder loopt dan x=6. Dus het antwoord moet zijn:
[√11,6]
Of als je de snijpunten benaderd hebt:
[3,22;6]

WvR
woensdag 7 mei 2003

©2001-2024 WisFaq