Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

C-14 ouderdomsbepaling, ongelijkheid

Ik werd de vorige keer doorverwezen na een andere vraag, dit was echter een heel ander probleem, dus nog een keer míjn vraag:

De volgende formule voor de ouderdomsbepaling met C-14 (halveringstijd
5730 jaar) is gegeven:

t = ln (N[t] / N[0]) · 5730 / (-0,693)

N[t] = percentage C-14 in dode object
N[0] = percentage in levende object dus 100 %

t is gegeven: 19040

Hoe kan ik deze ongelijkheid oplossen, dus de N[t] uitrekenen?

Alvast bedankt,
Xander

Xander
Leerling bovenbouw havo-vwo - zaterdag 3 mei 2003

Antwoord

Goeie avond,

Als ik jouw vraag goed begrijp wil je de vergelijking
t = -ln (N[t] / N[0]) · 5730 /0,693

oplossen naar N[t]. Dit doe je als volgt:

t = -ln (N[t] / N[0]) · 8268,398268
Û
-t / 8268,398268 = ln(N[t] / N[0])
Û (ln(x)=y = x=ey)
e-t / 8268,398268 = N[t] / N[0]
Û
N[t] = e(-0.0001209424084·t)*N[0]

t heb je gegeven en N[0] zal waarschijnlijk van het te onderzoeken materiaal afhangen.

Groet,

Koen

km
zaterdag 3 mei 2003

©2001-2024 WisFaq