De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Asymptoten

 Dit is een reactie op vraag 90627 
Hoi, ik snap het tot een bepaalde stap. Vanaf het moment dat je verheft tot een vierkantswortel bij de 3e stap ben ik hem weer kwijt. Hoe komt in de 3e stap de x2 in de noemer? Waarom geldt de vierkantswortel voor heel de breuk?

Als ik het niet te moeilijk maak zou je dan b. ook willen uitwerken?

Melike
Student universiteit België - donderdag 8 oktober 2020

Antwoord

Volgens de theorie:

$
\eqalign{
& {\text{asymptoot}}:y = ax + b \cr
& a = \mathop {\lim }\limits_{x \to \infty } \frac{{ - x - \sqrt {x^2 - 9} }}
{x} \cr
& b = \mathop {\lim }\limits_{x \to \infty } - x - \sqrt {x^2 - 9} - ax \cr}
$

Je krijgt dan (helemaal uitgeschreven):

$
\eqalign{
& a = \mathop {\lim }\limits_{x \to \infty } \frac{{ - x}}
{x} - \frac{{\sqrt {x^2 - 9} }}
{x} \cr
& a = \mathop {\lim }\limits_{x \to \infty } - 1 - \frac{{\sqrt {x^2 - 9} }}
{{\sqrt {x^2 } }} \cr
& a = \mathop {\lim }\limits_{x \to \infty } - 1 - \sqrt {\frac{{x^2 - 9}}
{{x^2 }}} \cr
& a = \mathop {\lim }\limits_{x \to \infty } - 1 - \sqrt {\frac{{x^2 }}
{{x^2 }} - \frac{9}
{{x^2 }}} \cr
& a = \mathop {\lim }\limits_{x \to \infty } - 1 - \sqrt {1 - \frac{9}
{{x^2 }}} = - 1 - \sqrt 1 = - 2 \cr}
$

Als je de teller wilt delen door $x$ dan deel je onder het wortelteken door $x^2$. Vandaar!

Als je $a$ berekend hebt dan kan je $b$ bepalen:

$
\eqalign{
& b = \mathop {\lim }\limits_{x \to \infty } - x - \sqrt {x^2 - 9} + 2x \cr
& b = \mathop {\lim }\limits_{x \to \infty } x - \sqrt {x^2 - 9} = 0 \cr
& {\text{asymptoot}}:y = - 2x \cr}
$

...en dan ben je er...

Naschrift

Ik gebruik bij de uitwerking de volgende formules:

$
\eqalign{
& \frac{{a + b}}
{c} = \frac{a}
{c} + \frac{b}
{c} \cr
& \frac{{\sqrt a }}
{{\sqrt b }} = \sqrt {\frac{a}
{b}} \cr}
$

Hopelijk lukt het zo. Anders maar weer verder vragen.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 8 oktober 2020



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3