De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Tangens

Ik heb echt geen flauw idee hoe je de afgeleide van een tangens neemt. Ik weet wel de regels ervoor, maar met tot de macht 3 snap ik het niet.

f(x) = tan3(x)
Wat is hiervan dan de afgeleide?

Kaylee
Leerling bovenbouw havo-vwo - woensdag 29 augustus 2018

Antwoord

Beste Kaylee,

Als ik je goed begrijp ken je dus wél de afgeleide van de tangens, of kan je die opzoeken in een tabel, maar heb je moeite met de derdemacht erbij? Daarvoor heb je de kettingregel nodig.

De afgeleide van de $\tan x$ is $\eqalign{\frac{1}{\cos^2x}}$ en de afgeleide van $x^3$ is $3x^2$. Volgens de kettingregel is de afgeleide van $\tan^3x$ dan:
$$\left(\tan^3x\right)'=3\tan^2x\left(\tan x\right)'=3\tan^2x\frac{1}{\cos^2x}$$Kan je dat volgen? Lees goed de uitleg op de pagina over de kettingregel en bestudeer een paar voorbeelden.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 29 augustus 2018



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3