De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Re: Re: Inverse Laplace

 Dit is een reactie op vraag 78015 
ik heb al verschillende malen de 4 integralen afzonderlijk uitgerekend, maar kom telkens nooit aan het correcte antwoord ... :(

Colman
Student universiteit België - maandag 4 april 2016

Antwoord

Ik krijg, achtereenvolgens $I_1=\frac18\cos2t-\frac18\cos2t\cos4t$, $I_2=\frac12t\sin2t-\frac18\sin2t\sin4t$, $I_3=\frac12t^2\cos2t+\frac14t\cos2t\sin4t+\frac1{16}\cos4t\cos2t-\frac1{16}\cos2t$, en $I_4=-\frac14t\sin2t\cos4t+\frac1{16}\sin2t\sin4t$. Met behulp van wat gonioformules kun je daar
$$
I_1+I_2-I_3-I_4=-\frac12t^2\cos2t+\frac14\sin2t
$$
van maken.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 5 april 2016
 Re: Re: Re: Re: Inverse Laplace 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3