De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Snijpunt cirkel en raaklijn

Zou iemand me kunnen helpen met het oplossen van het onderstaande probleem?

Gegeven het onderstaande stelsel:
y=mx+8+2x
(x-2)2+(y-5)2=25
(De cirkel en de raaklijn mogen slechts 1 punt gemeenschappelijk hebben.)

Ik ben gestart met de substitutie van y in de vergelijking van de cirkel. Na uitwerken bekom ik de onderstaande vergelijking:
(5+4m+m2)x2+(8+6m)x-12=0

Aangezien de cirkel en de raaklijn slechts 1 snijpunt mogen hebben kunnen we D=0
(8+6m)2-4·(5+4m+m2)·(-12) = 0

Na uitwerken bekom ik:
0 = 84m2+288m+304

Ik veronderstel dat er ergens een fout zit :-/

Alvast bedankt!

Jasmin
2de graad ASO - maandag 27 april 2015

Antwoord

Hallo Jasmine,

De tweede vergelijking is de vergelijking van een cirkel met middelpunt (2,5) en straal 5.
De eerste vergelijking levert een rechte lijn door het punt (0,8). Dit punt ligt binnen de cirkel. Elke lijn door dit punt snijdt de cirkel in twee punten. Je zult dus nooit een waarde van m vinden zodanig dat de lijn een raaklijn aan de cirkel wordt.
Weet je zeker dat je de opgave juist hebt overgenomen?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 28 april 2015
 Re: Snijpunt cirkel en raaklijn 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3