De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Gelijkvormigheid evenredigheden

Beste

ik zit met het volgende vraagstuk:
In een rechthoekige driehoek ABC ( rechte hoek A) is AD de hoogetelijn op de schuine zijde met voetpunt D.
De twee stippellijnen door het punt D staan loodrecht op elkaar en snijden [AB] en [AC] in de punten Q en P.
Bewijs, wat ook de stand van de stippellijnen is:
|CP|:|PA| = |AQ|:|QB|

Wat ik al heb als oplossing:
de twee rechten kunnen variëren maar in elke stand blijken de driehoeken BDQ en ADP enerzijds en de driehoeken DQA en DPC gelijkvormig te zijn.
Als ik deze evenredigheden uitschrijf bekom ik het volgende:
voor de eerste twee driehoeken:
|QD|:|DP| = |BQ|:|AP|= |BD|:|AD|
voor de andere twee:
|DQ|:|DP| = |DA|:|DC|= |QA|:|PC|

nu moet ik zoeken hoe ik aan deze evenredigheid kom
|CP|:|PA| = |AQ|:|QB| of met andere woorden wat is het verband tussen die evenredigheden?

Alvast bedankt voor jullie hulp!!

Thomas
Student Hoger Onderwijs België - donderdag 14 augustus 2014

Antwoord

De driehoeken $ADB$ en $CDA$ zijn ook gelijkvormig en bij de gelijkvormigheid past $BDQ$ op $APD$ en $AQD$ op $CPD$. Dat betekent dat al je zes verhoudingen aan elkaar gelijk zijn. In het bijzonder
$$
|BQ|:|AP| = |QA|:|PC|
$$

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 14 augustus 2014



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3