De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
|||||||||||||||||||
|
\require{AMSmath}
Re: Bij de standaarddeviatie delen door n-1?
En toch is het mij dan niet duidelijk waarom je dan niet bij een populatie met n-1 rekent want ook daar geldt toch dat de som van de afwijkingen 0 is en dat de laatste afwijking volgt uit de n-1 vorige afwijkingen? De laatste afwijking ligt dan toch net zo goed vast? AntwoordDe standaarddeviatie van een steekproef is een schatter van de standaarddeviatie van de populatie. Door te delen door 'n-1' levert dat (volgens de boeken) een betere schatter op.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|