De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Algemene vergelijking graad 2

1.10.1 Opdracht. Bekijk een algemene vergelijking van graad twee
ax2 + bxy + cy2 + dx + ey + f = 0
in variabelen x en y met gehele coëfficiënten a, . . . , f. Toon aan dat
als de vergelijking één oplossing heeft in rationale getallen, zij er dan
oneindig veel heeft, als volgt.
(a) Noem de gegeven rationale oplossing (x0, y0). Schrijf de vergelijking
op van een rechte lijn Lt door (x0, y0) met hellingsgetal
t, waarbij t een rationaal getal is.
40
(b) Toon aan dat het tweede snijpunt (x1, y1) van Lt met de oplossingen
van de gegeven vergelijking ook een rationale oplossing
is. Hint: je kan een formule voor x1 en y1 afleiden. Het kan
ook korter als volgt. Laat het volgende zien:
Stelling. Als ax2 + bx + c = 0 een vergelijking is
met a, b, c rationale getallen, a 6= 0 en oplossingen
x0 en x1, dan is x0 · x1 = c/a.
Dit kan je zien door ax2 + bx + c = a(x − x0)(x − x1) te
schrijven.
(c) Toon nu aan dat er oneindig veel oplossingen zijn voor de oorspronkelijke
vergelijking.

Alvast bedankt!

Gr. Johan

Johan
Student hbo - woensdag 7 juli 2010

Antwoord

Johan,zie
http://www.staff.science.uu.nl/~corne102/publications/diovglvanuitdeverte.pdf

kn
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 7 juli 2010



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3