De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
||||||||||||||||||
|
\require{AMSmath}
Buigpunt van een grafiekDe opdracht is: bepaal a en b zodanig dat P(1,1) een buigpunt is van de grafiek van f(x)=a/(x2+b) AntwoordJe tweede afgeleide is in orde. Vul daar x = 1 in en de uitkomst moet dan gelijk aan 0 zijn. Bedenk ook nog dat het punt (1,1) op de grafiek van f ligt, zodat f(1) = 1 moet gelden. Combineer beide resultaten en a en b zijn snel gevonden.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|