De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Cyclometrische vgln (1) oef 142

hoi,
opdracht is:
1)Toon aan dat voor alle van nul verschillende natuurlijke getallen geldt dat Bgtan (1/(x2+x+1))=Bgtan (1/x) - Bgtan (1/(x+1))
ik kom uit 2x3+2x2+2x+2 = 0
wat doe ik verkeerd?
2) Leid hieruit af dat Bgtan (1/3) +Bgtan(1/7) +Bgtan(1/13)+Bgtan(1/21) + ..... = p/4
dit weet ik ook niet hoe te beginnen
alvast bedankt
srry dat ik zoveel vragen stel

yann
3de graad ASO - vrijdag 8 februari 2008

Antwoord

Hoi,

Voor je eerste opgave is het een kwestie van de tangens te nemen van beide delen van de vergelijking. Lukt het niet laat je maar iets weten.

De tweede ziet er moeilijk uit maar is het niet. Zeker niet als je de eerste hebt bewezen. Die 1/3, 1/7, 1/13,... zijn eigenlijk niets anders dan natuurlijke getallen die worden ingevuld in de vergelijkin erboven. Zo is Bgtan(1/3)=Bgtan(1/(12+1+1)), Bgtan(1/7)=Bgtan(1/(22+2+1)),... Uit de vergelijking erboven weet je nu dat
Bgtan (1/(x2+x+1))=Bgtan(1/x) - Bgtan(1/(x+1)) dus...

Lukt het zo?

Kevin
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 8 februari 2008
 Re: Cyclometrische vgln (1) oef 142 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3