De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Limiet naar 0

Graag wat hulp bij het berekenen van volgende oefening:

lim x -- 0 (tgx -sinx) / x3

mvg,

SB

Sara B
Student Hoger Onderwijs België - zondag 13 januari 2008

Antwoord

Als je de limiet gewoon berekent krijg je (tg 0 - sin 0) / 03 = 0/0
Dit geeft dus iets typisch dat we kunnen verwerken met de regel van de l'Hospital. Deze geeft in dit geval

lim x-0 f(x)/g(x) = 0/0 = lim x-0 f(x)/g(x) = lim x-0 (df/dx)/(dg/dx)

Passen we dit toe dan krijgen we het volgende. De afgeleide van de teller is 1/(cos x)^2 - cos x.

De afgeleide van de noemer is 3 x^2. Vullen we nu weer 0 in krijgen we (1-1)/0. Dit is dus hetzelfde resultaat en we moeten dus opnieuw de l'Hospital toepassen

De tweede afgeleide van de teller is 2 (sin x)/((cos x)^3) + sin x.

De tweede afgeleide van de teller is 6x. Weer krijgen we 0/0. Als we nu een laatste keer de regel toepassen krijgen we voor de teller

2/((cos x)^2) + cos(x) + ((sin x)^2)/((cos x)^4)

De teller geeft gewoon 6. Als we nu nul invullen krijgen we (2+1+0)/6 = 1/2.
Wat meteen ook het resultaat is.

FvS
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 13 januari 2008



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3